又到了我们给大家分享有关傅里叶气体品牌怎么样知乎的时候了,同时我们也会对与之对应的傅里叶气体品牌怎么样知乎进行一样的解释哦,希望小伙伴们可以仔细的阅读,如果能对你们正好有所帮助,记得支持一下本站哦。
本文目录一览:
- 1、简单理解傅里叶级数(Fourier Series)
- 2、大学高数问题?
- 3、万能的知乎网友,我家要装修,想问衡阳装修公司好一点的,应该怎么选择呢?
- 4、汽车除甲醛最有效方法是什么?
- 5、有哪些文字绝妙到一句话就是一个故事 知乎
简单理解傅里叶级数(Fourier Series)
从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。 这种以时间作为参照来观察动态世界的方法我们称其为时域分析 。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。
还是举个栗子并且有图有真相才好理解。
如果我说我能用前面说的正弦曲线波叠加出一个带 90 度角的矩形波来,你会相信吗?你不会,就像当年的我一样。但是看看下图:
第一幅图是一个郁闷的正弦波 cos(x)
第二幅图是 2 个卖萌的正弦波的叠加 cos (x) +a.cos (3x)
第三幅图是 4 个发春的正弦波的叠加
第四幅图是 10 个便秘的正弦波的叠加
随着正弦波数量逐渐的增长,他们最终会叠加成一个标准的矩形,大家从中体会到了什么道理?(只要努力,弯的都能掰直!)
随着叠加的递增,所有正弦波中上升的部分逐渐让原本缓慢增加的曲线不断变陡,而所有正弦波中下降的部分又抵消了上升到最高处时继续上升的部分使其变为水平线。一个矩形就这么叠加而成了。但是要多少个正弦波叠加起来才能形成一个标准 90 度角的矩形波呢?不幸的告诉大家,答案是无穷多个。(上帝:我能让你们猜着我?)
不仅仅是矩形,你能想到的任何波形都是可以如此方法用正弦波叠加起来的。这是没有接触过傅里叶分析的人在直觉上的第一个难点,但是一旦接受了这样的设定,游戏就开始有意思起来了。
还是上图的正弦波累加成矩形波,我们换一个角度来看看:
在这几幅图中,最前面黑色的线就是所有正弦波叠加而成的总和,也就是越来越接近矩形波的那个图形。而后面依不同颜色排列而成的正弦波就是组合为矩形波的各个分量。这些正弦波按照频率从低到高从前向后排列开来,而每一个波的振幅都是不同的。一定有细心的读者发现了,每两个正弦波之间都还有一条直线,那并不是分割线,而是振幅为 0 的正弦波!也就是说,为了组成特殊的曲线,有些正弦波成分是不需要的。
这里,不同频率的正弦波我们成为频率分量。
好了,关键的地方来了!!
如果我们把第一个频率最低的频率分量看作“1”,我们就有了构建频域的最基本单元。对于我们最常见的有理数轴,数字“1”就是有理数轴的基本单元。
(好吧,数学称法为——基。在那个年代,这个字还没有其他奇怪的解释,后面还有正交基这样的词汇我会说吗?)
时域的基本单元就是“1”秒,如果我们将一个角频率为ω0的正弦波cos(ω0t)看做基础,那么频域的基本单元就是ω0。
有了“1”,还要有“0”才能构成世界,那么频域的“0”是什么呢?cos(0t)就是一个周期无限长的正弦波,也就是一条直线!所以在频域,0 频率也被称为直流分量,在傅里叶级数的叠加中,它仅仅影响全部波形相对于数轴整体向上或是向下而不改变波的形状。
接下来,让我们回到初中,回忆一下已经死去的八戒,啊不,已经死去的老师是怎么定义正弦波的吧。
正弦波就是一个圆周运动在一条直线上的投影。所以频域的基本单元也可以理解为一个始终在旋转的圆。
介绍完了频域的基本组成单元,我们就可以看一看一个矩形波,在频域里的另一个模样了:
这就是矩形波在频域的样子,是不是完全认不出来了?教科书一般就给到这里然后留给了读者无穷的遐想,以及无穷的吐槽,其实教科书只要补一张图就足够了:频域图像,也就是俗称的频谱,就是—
再清楚一点:
老实说,在我学傅里叶变换时,维基的这个图还没有出现,那时我就想到了这种表达方法,而且,后面还会加入维基没有表示出来的另一个谱——相位谱。
但是在讲相位谱之前,我们先回顾一下刚刚的这个例子究竟意味着什么。记得前面说过的那句“世界是静止的”吗?估计好多人对这句话都已经吐槽半天了。想象一下,世界上每一个看似混乱的表象,实际都是一条时间轴上不规则的曲线,但实际这些曲线都是由这些无穷无尽的正弦波组成。我们看似不规律的事情反而是规律的正弦波在时域上的投影,而正弦波又是一个旋转的圆在直线上的投影。那么你的脑海中会产生一个什么画面呢?
我们眼中的世界就像皮影戏的大幕布,幕布的后面有无数的齿轮,大齿轮带动小齿轮,小齿轮再带动更小的。在最外面的小齿轮上有一个小人——那就是我们自己。我们只看到这个小人毫无规律的在幕布前表演,却无法预测他下一步会去哪。而幕布后面的齿轮却永远一直那样不停的旋转,永不停歇。这样说来有些宿命论的感觉。说实话,这种对人生的描绘是我一个朋友在我们都是高中生的时候感叹的,当时想想似懂非懂,直到有一天我学到了傅里叶级数……
上一章的关键词是:从侧面看。这一章的关键词是:从下面看。
在这一章最开始,我想先回答很多人的一个问题:傅里叶分析究竟是干什么用的?这段相对比较枯燥,已经知道了的同学可以直接跳到下一个分割线。
先说一个最直接的用途。无论听广播还是看电视,我们一定对一个词不陌生——频道。频道频道,就是频率的通道,不同的频道就是将不同的频率作为一个通道来进行信息传输。下面大家尝试一件事:
先在纸上画一个sin(x),不一定标准,意思差不多就行。不是很难吧。好,接下去画一个sin(3x)+sin(5x)的图形。别说标准不标准了,曲线什么时候上升什么时候下降你都不一定画的对吧?
好,画不出来不要紧,我把sin(3x)+sin(5x)的曲线给你,但是前提是你不知道这个曲线的方程式,现在需要你把sin(5x)给我从图里拿出去,看看剩下的是什么。这基本是不可能做到的。但是在频域呢?则简单的很,无非就是几条竖线而已。
所以很多在时域看似不可能做到的数学操作,在频域相反很容易。这就是需要傅里叶变换的地方。尤其是从某条曲线中去除一些特定的频率成分,这在工程上称为 滤波 ,是信号处理最重要的概念之一,只有在频域才能轻松的做到。
再说一个更重要,但是稍微复杂一点的用途——求解微分方程。(这段有点难度,看不懂的可以直接跳过这段)微分方程的重要性不用我过多介绍了。各行各业都用的到。但是求解微分方程却是一件相当麻烦的事情。因为除了要计算加减乘除,还要计算微分积分。而傅里叶变换则可以让微分和积分在频域中变为乘法和除法,大学数学瞬间变小学算术有没有。
傅里叶分析当然还有其他更重要的用途,我们随着讲随着提。
下面我们继续说相位谱:
通过时域到频域的变换,我们得到了一个从侧面看的频谱,但是这个频谱并没有包含时域中全部的信息。因为频谱只代表每一个对应的正弦波的振幅是多少,而没有提到相位。基础的正弦波A.sin(wt+θ)中,振幅,频率,相位缺一不可,不同相位决定了波的位置,所以对于频域分析,仅仅有频谱(振幅谱)是不够的,我们还需要一个相位谱。那么这个相位谱在哪呢?我们看下图,这次为了避免图片太混论,我们用7个波叠加的图。
鉴于正弦波是周期的,我们需要设定一个用来标记正弦波位置的东西。在图中就是那些小红点。小红点是距离频率轴最近的波峰,而这个波峰所处的位置离频率轴有多远呢?为了看的更清楚,我们将红色的点投影到下平面,投影点我们用粉色点来表示。当然,这些粉色的点只标注了波峰距离频率轴的距离,并不是相位。
在完整的立体图中,我们将投影得到的时间差依次除以所在频率的周期,就得到了最下面的相位谱。所以,频谱是从侧面看,相位谱是从下面看。下次偷看女生裙底被发现的话,可以告诉她:“对不起,我只是想看看你的相位谱。”
注意到,相位谱中的相位除了0,就是Pi。因为cos(t+Pi)=-cos(t),所以实际上相位为Pi的波只是上下翻转了而已。对于周期方波的傅里叶级数,这样的相位谱已经是很简单的了。另外值得注意的是,由于cos(t+2Pi)=cos(t),所以相位差是周期的,pi和3pi,5pi,7pi都是相同的相位。人为定义相位谱的值域为(-pi,pi],所以图中的相位差均为Pi。
最后来一张大集合:
傅里叶变换实际上是对一个周期无限大的函数进行傅里叶变换。
所以说,钢琴谱其实并非一个连续的频谱,而是很多在时间上离散的频率,但是这样的一个贴切的比喻真的是很难找出第二个来了。
因此在傅里叶变换在频域上就从离散谱变成了连续谱。那么连续谱是什么样子呢?
你见过大海么?
为了方便大家对比,我们这次从另一个角度来看频谱,还是傅里叶级数中用到最多的那幅图,我们从频率较高的方向看。
以上是离散谱,那么连续谱是什么样子呢?
尽情的发挥你的想象,想象这些离散的正弦波离得越来越近,逐渐变得连续……
直到变得像波涛起伏的大海:
很抱歉,为了能让这些波浪更清晰的看到,我没有选用正确的计算参数,而是选择了一些让图片更美观的参数,不然这图看起来就像屎一样了。
不过通过这样两幅图去比较,大家应该可以理解如何从离散谱变成了连续谱的了吧?原来离散谱的叠加,变成了连续谱的累积。所以在计算上也从求和符号变成了积分符号。
不过,这个故事还没有讲完,接下去,我保证让你看到一幅比上图更美丽壮观的图片,但是这里需要介绍到一个数学工具才能然故事继续,这个工具就是——
虚数i这个概念大家在高中就接触过,但那时我们只知道它是-1 的平方根,可是它真正的意义是什么呢?
这里有一条数轴,在数轴上有一个红色的线段,它的长度是1。当它乘以 3 的时候,它的长度发生了变化,变成了蓝色的线段,而当它乘以-1 的时候,就变成了绿色的线段,或者说线段在数轴上围绕原点旋转了 180 度。
我们知道乘-1 其实就是乘了两次 i 使线段旋转了 180 度,那么乘一次 i 呢——答案很简单——旋转了 90 度。
同时,我们获得了一个垂直的虚数轴。实数轴与虚数轴共同构成了一个复数的平面,也称复平面。这样我们就了解到,乘虚数i的一个功能——旋转。
现在,就有请宇宙第一耍帅公式欧拉公式隆重登场——
这个公式在数学领域的意义要远大于傅里叶分析,但是乘它为宇宙第一耍帅公式是因为它的特殊形式——当x等于 Pi 的时候。
经常有理工科的学生为了跟妹子表现自己的学术功底,用这个公式来给妹子解释数学之美:”石榴姐你看,这个公式里既有自然底数e,自然数 1 和0,虚数i还有圆周率 pi,它是这么简洁,这么美丽啊!“但是姑娘们心里往往只有一句话:”臭屌丝……“
这个公式关键的作用,是将正弦波统一成了简单的指数形式。我们来看看图像上的涵义:
欧拉公式所描绘的,是一个随着时间变化,在复平面上做圆周运动的点,随着时间的改变,在时间轴上就成了一条螺旋线。如果只看它的实数部分,也就是螺旋线在左侧的投影,就是一个最基础的余弦函数。而右侧的投影则是一个正弦函数。
关于复数更深的理解,大家可以参考:
复数的物理意义是什么?
这里不需要讲的太复杂,足够让大家理解后面的内容就可以了。
有了欧拉公式的帮助,我们便知道:正弦波的叠加,也可以理解为螺旋线的叠加在实数空间的投影。而螺旋线的叠加如果用一个形象的栗子来理解是什么呢?
光波
高中时我们就学过,自然光是由不同颜色的光叠加而成的,而最著名的实验就是牛顿师傅的三棱镜实验:
所以其实我们在很早就接触到了光的频谱,只是并没有了解频谱更重要的意义。
但不同的是,傅里叶变换出来的频谱不仅仅是可见光这样频率范围有限的叠加,而是频率从 0 到无穷所有频率的组合。
这里,我们可以用两种方法来理解正弦波:
第一种前面已经讲过了,就是螺旋线在实轴的投影。
另一种需要借助欧拉公式的另一种形式去理解:
将以上两式相加再除2,得到:
这个式子可以怎么理解呢?
我们刚才讲过,e^(it)可以理解为一条逆时针旋转的螺旋线,那么 e^(-it)则可以理解为一条顺时针旋转的螺旋线。而 cos (t)则是这两条旋转方向不同的螺旋线叠加的一半,因为这两条螺旋线的虚数部分相互抵消掉了!
举个例子的话,就是极化方向不同的两束光波,磁场抵消,电场加倍。
这里,逆时针旋转的我们称为正频率,而顺时针旋转的我们称为负频率(注意不是复频率)。
好了,刚才我们已经看到了大海——连续的傅里叶变换频谱,现在想一想,连续的螺旋线会是什么样子:
想象一下再往下翻:
是不是很漂亮?
你猜猜,这个图形在时域是什么样子?
哈哈,是不是觉得被狠狠扇了一个耳光。数学就是这么一个把简单的问题搞得很复杂的东西。
顺便说一句,那个像大海螺一样的图,为了方便观看,我仅仅展示了其中正频率的部分,负频率的部分没有显示出来。
如果你认真去看,海螺图上的每一条螺旋线都是可以清楚的看到的,每一条螺旋线都有着不同的振幅(旋转半径),频率(旋转周期)以及相位。而将所有螺旋线连成平面,就是这幅海螺图了。
好了,讲到这里,相信大家对傅里叶变换以及傅里叶级数都有了一个形象的理解了,我们最后用一张图来总结一下:
好了,傅里叶的故事终于讲完了,下面来讲讲我的故事:
这篇文章第一次被卸下来的地方你们绝对猜不到在哪,是在一张高数考试的卷子上。当时为了刷分,我重修了高数(上),但是后来时间紧压根没复习,所以我就抱着裸考的心态去了考场。但是到了考场我突然意识到,无论如何我都不会比上次考的更好了,所以干脆写一些自己对于数学的想法吧。于是用了一个小时左右的时间在试卷上洋洋洒洒写了本文的第一草稿。
你们猜我的了多少分?
6 分
没错,就是这个数字。而这 6 分的成绩是因为最后我实在无聊,把选择题全部填上了C,应该是中了两道,得到了这宝贵的 6 分。说真的,我很希望那张卷子还在,但是应该不太可能了。
那么你们猜猜我第一次信号与系统考了多少分呢?
45 分
没错,刚刚够参加补考的。但是我心一横没去考,决定重修。因为那个学期在忙其他事情,学习真的就抛在脑后了。但是我知道这是一门很重要的课,无论如何我要吃透它。说真的,信号与系统这门课几乎是大部分工科课程的基础,尤其是通信专业。
在重修的过程中,我仔细分析了每一个公式,试图给这个公式以一个直观的理解。虽然我知道对于研究数学的人来说,这样的学习方法完全没有前途可言,因为随着概念愈加抽象,维度越来越高,这种图像或者模型理解法将完全丧失作用。但是对于一个工科生来说,足够了。
后来来了德国,这边学校要求我重修信号与系统时,我彻底无语了。但是没办法,德国人有时对中国人就是有种藐视,觉得你的教育不靠谱。所以没办法,再来一遍吧。
这次,我考了满分,而及格率只有一半。
老实说,数学工具对于工科生和对于理科生来说,意义是完全不同的。工科生只要理解了,会用,会查,就足够了。但是很多高校却将这些重要的数学课程教给数学系的老师去教。这样就出现一个问题,数学老师讲得天花乱坠,又是推理又是证明,但是学生心里就只有一句话:学这货到底干嘛用的?
缺少了目标的教育是彻底的失败。
在开始学习一门数学工具的时候,学生完全不知道这个工具的作用,现实涵义。而教材上有只有晦涩难懂,定语就二十几个字的概念以及看了就眼晕的公式。能学出兴趣来就怪了!
好在我很幸运,遇到了大连海事大学的吴楠老师。他的课全程来看是两条线索,一条从上而下,一条从下而上。先将本门课程的意义,然后指出这门课程中会遇到哪样的问题,让学生知道自己学习的某种知识在现实中扮演的角色。然后再从基础讲起,梳理知识树,直到延伸到另一条线索中提出的问题,完美的衔接在一起!
这样的教学模式,我想才是大学里应该出现的。
最后,写给所有给我点赞并留言的同学。真的谢谢大家的支持,也很抱歉不能一一回复。因为知乎专栏的留言要逐次加载,为了看到最后一条要点很多次加载。当然我都坚持看完了,只是没办法一一回复。
本文只是介绍了一种对傅里叶分析新颖的理解方法,对于求学,还是要踏踏实实弄清楚公式和概念,学习,真的没有捷径。但至少通过本文,我希望可以让这条漫长的路变得有意思一些。
最后,祝大家都能在学习中找到乐趣…
大学高数问题?
大学无法理解高等数学怎么办?
匿名不能邀请呢,要不来关注的同学们帮我邀请一些大牛来作答?
说来也好笑,我从国内某top5高校理工科毕业多年,一直苦恼于高等数学学不好【毕业以后从事的事情跟高数尚未发生半点关系。。。我就是单纯奇怪一下这个事情】。自我感觉问题在于我对于高数里的东西无法做出直观的想象。
厚颜无耻地说一句,高中物理我学得非常轻松而且成绩非常好,基本就是翻一遍书考试就接近满分【高考物理部分满分】,我感觉我能把书上的理论公式转变为动画片一样的场景,做题时字面的意思会自动形象化地镶嵌到那些动画片里面出现在我脑子里,就像放电影似的。
但是高数就不行了,我努力多时也没法把那些公式定理形象化理解,貌似只能死记硬背。所以直接导致大学物理、电磁场电磁波等科目成绩也相当一般。
是不是我的脑子学到高中就是极限了?直说也无妨,因为我发现我现在干的这活其实学到初中就能做了,赚的貌似也还可以。。。囧。。。
==============我举个栗子==========
最近知乎上一个很火的文章:傅里叶分析之掐死教程(完整版)更新于2014.06.06 - 与时间无关的故事 - 知乎专栏
我前面都能看懂,但是到了欧拉公式这儿就不懂了。我想不出e的iπ次是怎样形成的,后面就理解不了了。。。主要是国内教材太差,其实高考范围内就有差距了,你看北京四中,人大附的和三线城市普通老师对同样内容的解读,不在一个维度。
但是题主的智商,应付初等数学,物理内容不在话下,就忽略了这个因素,到了高等数学,理论物理的阶段,就发现遇到了瓶颈,这是很正常的,下面就推荐下数学方面的教材吧。
大学数学基础课是数学分析,高等代数,概率三门。
数学分析(或叫做高等数学,微积分)经典名著太多了,比如菲赫金哥尔茨的《微积分学教程》,柯朗的《微积分和数学分析引论》,卓里奇的《数学分析》,还有美国教材《托马斯微积分》,都是好书,不过这些都是惶惶巨著,需要下大功夫研读,如果想从很浅的基础开始看,可以看《普林斯顿微积分读本》(网上有48课时视频)。所有这些都比国内教材(比如同济的)好很多很多。如果英语基础好的话直接看英文版的,否则看中文的也行。
高等代数(或者叫做线性代数),可以看David C.Lay的《线性代数及其应用》,这本书入门级别,但是质量很高,掌握之后可以看《线性代数应该这样学》,看完线性代数后还觉得不过瘾,可以看高等代数,或者矩阵分析,矩阵理论等等教材,有了线性代数的基础,就有了免疫力,不至于被国内的枯燥教材弄恶心了。
概率论,看国外的最好
这三门学完后,就可以进阶了,首先是在这三门的基础上进阶,数学分析进阶可以看实变函数方面的书,比如《陶哲轩实分析》,不过这本书偏重数学分析的内容,算是对数学分析的深化理解。高等代数进阶刚才说过了,可以看矩阵分析方面的书。多个方向同时进阶可以看咱们华罗庚的《高等数学引论》。
数学的主要几个分支大概是:代数,几何,分析,概率,离散,计算,当然分类不是唯一的。进阶结束之后就可以向着这些方向进发了:
代数方面的,可以看Artin的《代数》,算是入门书,看完之后就可以看代数里的各个方向的著作,比如数论,群论,环,域,拓扑等等。这些方面也是经典著作云集,以国外的为主。
几何方面的,其实几何与代数到了最后好像要统一了。可以先看解析几何入门,然后进入微分几何,黎曼几何,流形,射影几何,画法几何,双曲几何等等。几何与代数统一叙述的著作,可以看代数拓扑,代数几何,代数曲线,同调论方面的书。
数学中最大的一个分支应该是分析吧,它主要包括:实分析,复分析,泛函分析,调和分析,向量分析,张量分析,场论,函数论,常微分方程,偏微分方程,积分方程,积分变换,变分法,特殊函数等等。分析这方面相比代数之类的方向来说,更加偏应用一些。这些方面好书实在太多了,首先就是stein的四部曲:《傅里叶分析》,《实分析》,《复分析》,《泛函分析》。这四部书不厚,但是内容多,不过只要懂微积分和线性代数就可以学习了。
复分析还可以看拉夫连季耶夫的《复变函数论方法》,以及一本超级好书:《复分析:可视化方法》,前者讲复分析的方法(主要是共形映射)在各个物理,经济等学科里的应用方法,后者主要是把复变函数的抽象思想用非常美的图形表现出来,而且很深刻。
函数论方面可以看法兰西数学系列(蓝色封皮的)一些书,以及国内的两本:路见可的《解析函数边值问题教程》,闻国椿的《共形映射与边值问题》,函数论常常和奇异积分方程相联系,这方面有经典巨著:穆斯海里什维利的《奇异积分方程》
实分析常常和泛函分析相联系,可以看国内夏道行的《实变函数与泛函分析》,以及俄罗斯柯尔莫戈洛夫的《函数论与泛函分析初步》,美国Rudin的《泛函分析》等等。
学完实分析与复分析之后就可以看调和分析方面的书了,先推荐一本,stein的超级名著:《调和分析》,很厚,牛人stein的专业就是搞调和分析方面的,细细品味吧。
向量分析,张量分析,场论,其实这三个学科说是分析也是分析,说是几何也是几何,他们和微分几何有着很多联系,可以先看点入门的,比如国内的两本,一本工程数学类的绿色封皮的《矢量分析与场论》,一本白色封皮的《向量分析与场论》,都很薄,不过可以同时看美国Matthews的《向量微积分》,这本书也不厚,但是它后面的内容会过渡到指标和张量,便于进入张量的学习。张量分析方面可以看国内黄克智的《张量分析》,绝对是好书,作者留学俄罗斯,数学推导功底深不可测,所以学习该书也需要亲自动手推导,不过讲的还是比较清楚的。如果还觉得不够,可以看国外的《张量几何》,谁写的名字我忘了。张量本来就是和微分几何一道由黎曼一手发展的,所以到了最后会偏向几何了。
方程类的(常微分,偏微分,积分高数问题
万能的知乎网友,我家要装修,想问衡阳装修公司好一点的,应该怎么选择呢?
在装修行业待了6年时间,可以帮你分析一下怎么样去选择一家公司。
首先,好的装修公司肯定是让客户放心的,毕竟公司是门店摆在哪里,不会跑。可是衡阳装修公司太多了,怎样选择一家好的装修公司呢?第一,不要盲目去追求公司越大就越好,公司越大,装修价格越贵,因为有很多品牌广告因素体现在价格里面,花了很多没必要的费用,大家都知道装修是一项传统行业,不是什么高科技产品,都是靠师傅的手艺和公司的管理制度的完善的。所以选择越大的公司,只是图一个心里安慰。第二,当然也不要去选择太小的公司,小工作室,小门面的挂牌公司,没有保障,虽然价格很便宜,但是装修十多万,没必要为了省个几千块贪个便宜,后期出了问题,根本找不到人。第三,还有一种就是自己请游击队或者有亲戚朋友是做装修的,游击队装修都是凭借师傅的经验来施工,没有具体的方案和图纸,做到哪一步算一步。亲戚装修怎么说呢!总结一句话:做的好,大家都开心,做的不好,你说也不是,不说心里只有憋着,不好意思去说,严重一些的,亲戚都做不了。
装修公司怎样去了解呢?
第一、业主们想找到好的装修公司,首先要明白自己想要什么样的装修,自己装修的预算多少,然后在考擦施工质量,口碑好的装饰公司,进行综合对比,选择2-4家进行了解。
第二、在锁定2-3家公司后,就可以上门去实地了解,和设计师接触,把自己的需求预算和设计师沟通、讨论自己的一些想法,如果觉得设计师不错,公司满意再请设计师去房子现场量房进行方案设计和装修报价,例如:衡阳装修价格计算器,综合比较之后做最终决定。
第三、装修都是围绕:设计、材料、施工工艺、价格,售后为主体去了解。
希望以上几点对于正在迷茫中寻找装修公司的你,有所帮助!
汽车除甲醛最有效方法是什么?
1、无效方法
(1)活性炭,只能吸收车内空气中少量游离甲醛,无法长期吸收,灰尘PM2.5等会很快占据活性炭吸收空隙。
(2)车载空气净化器,滤网参考活性炭特性,更换周期短价格昂贵,智商税产物。
2、便宜方法
暴晒+通风。暴晒时车内温度高,甲醛散发快;车门全部打开通风可以快速带走散发出的甲醛,有效而又省钱,但新车停放需要通风时间比较久,最好持续一两周,如果不担心有人恶意破坏车内物品可以尝试,无人专门看管尽量不好这样。
3、实用办法
现在科技的发展,甲醛已不是不可控物质,光触媒,生物酶等催化作用,都可以有效快速降低车内甲醛含量,长效除甲醛不复发,但是在选择除甲醛公司时一定要慎重。甲醛治理机构,建议您从以下几方面进行比较:首先除醛产品有无各项国家检测资质,这是对身体健康安全的保障;其次服务技术师傅有无施工资质,这是对治理效果的保障;最后有无真实的检测合格报告,这是对生命安全的保障。有部分路边游击队式工作人员,不建议此类,虽然价格低廉,但无法保障安全。综上几个条件,您就可以从筛选出比较合适的甲醛治理机构了。
有哪些文字绝妙到一句话就是一个故事 知乎
一·百日笛子千日箫,小小胡琴拉断腰
民国的时候出了很多的京剧大师和昆曲大师,以我所知,堪称京剧最辉煌的历史,当时的社会一部进步人士开始西化一部人还固守着传统思想再加上社会局势的动荡,使人们很有点今朝有酒今朝醉,明朝无酒管他娘的活法。
京剧舞台上演的都是前朝的故事,唱的人入了戏,听的人也入了戏,这就忘了现实的苦痛了。
我倒是不喜欢看戏,但我喜欢听胡琴,没有一个好的京剧大师那得必须配一个好的胡琴师傅,胡琴托着角儿的嗓,你高胡琴就高,你低胡琴就低,你缺的地方,胡琴给你补上,你过的地方胡琴给你遮了,完美的修饰了唱腔。
略了解些之后,很是感叹,民国戏剧舞台上出了多少的角儿啊,梅老板,程老板红透了整个中国,却没有哪个胡琴师傅能红出圈里去,也就无人给他们专门录个唱片留芳百世,想想真是怪可惜的。
唱戏的台上一分钟,台下十年功,讲究的是天赋是努力是吃得苦中苦方为人上人,胡琴岂非也是如此,凭什么只能坐在舞台的阴影里拉断了腰也就是一片不显眼的绿叶儿。
二·君埋泉下泥销骨,我寄人间雪满头
30岁的白居易与23岁的元稹相识,从此牵手一生,除了死亡谁也没将他们分开过,不旦一起玩乐,一起作诗,你给我写信我必回信一封,我得一美妾也愿意与你分享,元稹去世后,白居易时常想起,于是在元稹去世九年之后写了这两句诗。
一字一字带着泪,一笔一笔含着血,一句一句都是情啊。
哪怕你不知道这两句诗背后的故事,任谁读来都能体会那种无能为力恨不能追随亡者而去的心情,你死了,我现在还活着只能算寄居在人间而已。
关于傅里叶气体品牌怎么样知乎和傅里叶气体品牌怎么样知乎的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号
发表评论
发表评论: