YP官网

行业动态

YP官网示优,优品至上。

温室气体多组分检测报价(温室气体核查)

YP官网示优官方账号 2023-03-08 行业动态 565 views 0

今天的文章给大伙介绍下温室气体多组分检测报价,和温室气体核查相关的内容,希望能对小伙伴们有所帮助,记得不要忘记收藏下本站喔。

本文目录一览:

甲烷检测中采用红外和催化传感器哪种更好?

甲烷探测器对监测各种应用的有效性和安全性至关重要。本文阐述了为什么红外(IR)传感器是探测甲烷的首选。就在30年前,矿工们只能靠使用金丝雀来警告他们矿井中存在高浓度的甲烷或一氧化碳。幸运的是,现在传感技术已经发展起来了,并且气体探测可选择的方法也越来越多。气体探测器能够量化和探测环境和工业气体,如甲烷、一氧化碳和二氧化碳,因而它们在确保广泛的应用和生产过程的有效性和安全性方面发挥着关键作用。

图1 甲烷分子示意图

气体探测器广泛用于监测甲烷浓度和泄漏探测

天然气主要由甲烷组成,被广泛用于发电。甲烷是一种温室气体,具有高度易燃性,可以与空气形成爆炸性混合物。在天然气开采、运输和发电过程中探测泄漏是至关重要的,因为甲烷泄漏可能导致破坏性结果。在化学工业中,甲醇、合成气、乙酸和其他商用化学品的生产,都依赖于甲烷气体传感器来确认生产过程是否有效且安全地运行。甲烷可能影响人的健康和环境,所以测量大气中的甲烷水平来监测环境条件的变化也变得越来越重要。

商用气体探测技术

市场上有各种各样的甲烷气体探测器和传感器,它们各有优缺点:• 电化学传感器电化学传感器通过甲烷与电极的腐蚀或氧化反应产生电流,该电流的大小可用于确定气体浓度。由于电极是暴露在大气中的,可能发生化学污染和腐蚀,因此电化学传感器需要经常更换。• 氢火焰离子化探测器(FID)FID使用氢火焰来电离甲烷气体,电离的气体会产生电流,计算该电流可以确定气体浓度。虽然FID准确且快速,但它们需要明火、氢气源和纯净空气供应,这意味着FID并不适合某些应用。• 催化传感器催化传感器通过催化氧气和甲烷的反应,产生的热量会引起传感器中的电阻变化,由此可以测量甲烷浓度。虽然催化传感器坚固且廉价,但运行时对氧气的需求是必不可少的,并且它们易受污染、中毒和烧结。因此需要频繁地校准和更换。• 半导体传感器工作原理与催化传感器类似,半导体传感器与甲烷反应,引起电阻变化,以此来计算气体浓度。与催化传感器一样,半导体传感器也易受污染和中毒。• 红外传感器红外传感器利用红外光束探测和测量大气中存在的任何气体。虽然红外传感器比其他传感器贵一点,但它们持久耐用。因此,红外传感器已成为探测各种气体的主要技术。

红外传感器是甲烷探测的首选技术

非分散红外(NDIR)传感器通常由IR源、IR探测器、采样腔和滤光器组成。通常,包含参考气体的第二个腔与采样腔平行运行。IR光透过大气采样腔施加到探测器上。采样腔中的甲烷气体会吸收特定波长的IR光。探测器前面的滤光器会阻挡掉非所选波长的光,因此探测器仅测量指定波长的衰减变化,(利用气体浓度与吸收强度的关系)可确定存在的甲烷浓度。与其它气体探测技术相比,红外传感器具有许多优点:它们具有内置的故障安全系统,这是因为它们可以用小信号代表高浓度气体,而在其他传感器中,小信号或无信号意味着零或低浓度。如果探测器发生故障或失灵,则不会记录IR辐射,这将触发警报。NDIR传感器也比需要燃烧混合气体的方法更精确。

在某些情况下,NDIR传感器甚至允许同时存在两种可燃气体时,可以检测其中一种可燃气体组分。尽管当用户无法确定气体混合物是否易燃时,的确存在一定限制。与其它可用类型的传感器不同,IR探测器不与甲烷气体相互作用。大气中的气体和任何污染物仅与光束相互作用。因此,探测器可密封以防止损坏,因而具有较长的使用寿命。红外探测器和其它传感器一样,也可提供准确的结果和快速的响应时间。半导体、催化、电化学传感器和FID都要求目标气体的浓度必须低于爆炸浓度的下限,但是IR传感器则可以实现0~100%气体浓度的精确计算。而且它们不需要外部气体或氧气来运行。红外传感器也存在一些缺点,它们可能会受到压力和温度调节的不利影响。尽管如此,先进的红外传感器现在可以进行压力和温度补偿,这意味着这种耐用且可靠的传感器劣势已经最小化。IR传感器现在被选为甲烷和其他工业和环境相关气体的探测方法。

Edinburgh Sensors公司Gascard NG实现可靠的气体探测

图2 Edinburgh Sensors的Gascard NG(Edinburgh Sensors是高品质气体传感解决方案的领先供应商,提供全系列的NDIR传感器,可用于二氧化碳、一氧化碳和甲烷的可靠探测)据麦姆斯咨询介绍,Gascard NG是种可被原始设备制造商(OEM)简单地集成到各种系统中的气体传感器,能够可靠且准确地计算二氧化碳、一氧化碳和甲烷气体浓度。一些红外传感器会受到压力或温度的影响,但Gascard NG采用了强大的压力和温度校正功能,以确保在各种环境中获得准确的结果。Gascard NG可用于各种研究、环境和工业应用中的甲烷探测,包括污染监测、农业研究、化学加工等等。

温室气体的主要种类

温室气体 (GHG Greenhouse Gas): 指任何会吸收和释放红外线辐射并存在大气中的气体。京都议定书中规定控制的6种温室气体为:二氧化碳(CO₂)、甲烷(CH₄)、氧化亚氮(N₂O)、氢氟碳化合物(HFCs) 、全氟碳化合物(PFCs)、六氟化硫(SF6)。

地球的大气中重要的温室气体包括下列数种:二氧化碳(CO₂)、臭氧(O3)、氧化亚氮(N₂O)、甲烷(CH4)、氢氟氯碳化物类(CFCs,HFCs,HCFCs)、全氟碳化物(PFCs)及六氟化硫(SF6)等。由于水蒸气及臭氧的时空分布变化较大,因此在进行减量措施规划时,一般都不将这两种气体 纳入考虑。至于在1997年于日本京都召开的联合国气候化纲要公约第三次缔约国大会中所通过的〔京都议定书〕,明订针对六种温室气体进行削减,包括上述所提及之: 二氧化碳(CO₂)、甲烷(CH4)、氧化亚氮(N₂O)、氢氟碳化物(HFCs)、全氟碳化物(PFCs)及六氟化硫(SF6)。其中以后三类气体造成温室效应的能力最强,但对全球升温的贡献百分比来说,二氧化碳由于含量较多,所占的比例也最大,约为55%。

二氧化碳

大气中的二氧化碳(CO₂)是植物光合作用合成碳水化合物的原料,它的增加可以增加光合产物,无疑对农业生产有利。同时,它又是具有温室效应的气体,对地球热量平衡有重要影响,因此它的增加又通过影响气候变化而影响农业。此外,大气中具有温室效应的微量气体还有甲烷、氯氟烃、一氧化碳、臭氧等,总的温室效应中二氧化碳的作用约占一半,其余为以上各种微量气体的作用。

二氧化碳浓度有逐年增加的趋势,50年代其质量分数年平均值约315×10(-6),70年代初已增加至325×10(-6),已超过345×10(-6),平均每年增加1.0-1.2×10(-6),或每年约以0.3%的速度增长。综合多数测定结果,在工业革命以前的二氧化碳质量分数为275×10(-6)。

大气中二氧化碳浓度增加的主要原因是工业化以后大量开采使用矿物燃料。1860年以来,由燃烧矿物质燃料排放的二氧化碳,平均每年增长率为4.22%,而近30年各种燃料的总排放量每年达到50亿吨左右。

大气中二氧化碳增加的另一个主要原因是采伐树木作燃料。森林原是大气碳循环中的一个主要的“库”,每平方米面积的森林可以同化1-2kg的二氧化碳。砍伐森林则把原本是二氧化碳的“库”变成了又一个向大气排放二氧化碳的“源”。据世界粮农组织(FAO,1982)估计,70年代末期每年约采伐木材24亿立方米,其中约有一半作为燃柴烧掉,由此造成的二氧化碳质量分数增加量每年可达0.4×10(-6)左右。

近200年来,另一个主要的温室气体——甲烷的增加也十分迅速。人和草食动物的肠道、粪便、沼泽地,稻田等都是产生甲烷的“源”。此外,人类在开采天然气和煤炭时,也向大气中排放甲烷。在工业化以前,大气中的甲烷的质量分数只有0.7×10(-6),已接近1.9×10(-6),预计到2030年可达到2.34×10(-6)。

氯氟烃是近50年工业污染的结果,70年代初首次检测到大气中的氯氟烃。由于氯氟烃可以破坏大气臭氧层而且本身又具有温室效应,因而已受到各国重视。

根据以上综合分析,如果按现二氧化碳等温室气体浓度的增加幅度,到21世纪30年代,二氧化碳和其它温室气体增加的总效应将相当于工业化前二氧化碳浓度加倍的水平,可引起全球气温上升1.5-4.5℃超过人类历史上发生过的升温幅度。由于气温升高,两极冰盖可能缩小,融化的雪水可使海平面上升20-140cm,对海岸城市会有严重的直接影响。

甲烷

甲烷是在缺氧环境中由产甲烷细菌或生物体腐败产生的,沼泽地每年会产生150Tg(1T=1012)消耗50Tg,稻田产生100Tg消耗50Tg,牛羊等牲畜消化系统的发酵过程产生100-150Tg,生物体腐败产生10-100Tg,合计每年大气层中的甲烷含量会净增350Tg左右。它在大气中存在的平均寿命在8年左右,可以通过下面的化学反应:

CH4+OH→CH3+H2O

消耗掉,而用于此反应的氢氧根(OH)的重量每年就达到500Tg。

一氧化二氮

一氧化二氮在大气层中的存在寿命是150年左右,尽管在对流层中是化学惰性的,但是可以利用太阳辐射的光解作用在同温层中将其中的90%分解,剩下的10%可以和活跃的原子氧O(1D)反应而消耗掉。即使如此大气层中的N2O仍以每年0.5-3Tg的速度净增。

N2O+hv→N2+O(1D)

N2O+O(1D)→N2+O2

N2O+O(1D)→2NO

氯氟碳化合物

氯氟碳化合物(CFC-11和CFC-12),它们在对流层中也是化学惰性的,但也可在同温层中利用太阳辐射光解掉或和活性碳原子反应消耗掉。

CCl₃F+hv→CCl₂F+Cl,

Cl₂F₂+hv→CClF₂+Cl

CCl₃F+O(1D)→CCl₂F+ClO

CCl₂F₂+O(1D)→CClF+ClO

造成气候变暖的主要原因是人类生产活动中排放大量什么

由于人类活动或者自然形成的温室气体,如:水汽(H₂O)、氟利昂、二氧化碳(CO₂)、氧化亚氮(N₂O)、甲烷(CH₄)、臭氧(O₃)、氢氟碳化物、全氟碳化物、六氟化硫等的排放,温室气体排放,造成温室效应,使全球气温上升。

地球在吸收太阳辐射的同时,本身也向外层空间辐射热量,其热辐射以3~30μm的长波红外线为主。当这样的长波辐射进入大气层时,易被某些分子量较大、极性较强的气体分子所吸收。

由于红外线的能量较低,不足以导致分子键能的断裂,因此气体分子吸收红外线辐射后没有化学反应发生,而只是阻挡热量自地球向外逃逸,相当于地球和外层空间的一个绝热层,即 “温室” 的作用。

大气中某些微量组分对地球长波辐射吸收作用使近地面热量得以保持,从而导致全球气温升高的现象被称为温室效应。

扩展资料:

导致温室效应的大气微量组分被称为温室气体。H₂O和大气中早已存在的CO₂是天然的温室气体。正是在它们的作用下,才形成了对地球生物最适宜的环境温度,从而使得生命能够在地球上生存和繁衍,假如没有大气层和这些天然的温室气体,地球的表面温度将比现在低33℃,人类和大多数动植物将面临生存危机。

全球气候变暖的主要原因是由于人类在自身发展过程中对能源的过度使用和自然资源的过度开发,造成大气中温室气体的浓度以极快的速度增长所致。这些温室气体有二氧化碳、甲烷、氧化亚氮(N₂O)、氢氟碳化物、全氟化碳和六氟化硫等六类。

全球变暖已成为制约人类经济社会可持续发展的重要障碍,控制污染物和温室气体排放是我们需要高度重视的。奥运场馆在节能减排方面的成功给了我们很大的信心,只要我们高度重视,发展替代煤炭电力的新能源,从理论上到实践中都是可行的。

2005年,我国发电量就超过了5亿千瓦时。但是,中国发电的80%是以燃煤为主的。从中国能源利用现状中就不难看出,地球升高的气温是人类用煤炭“烧”热的。因此,欲削减二氧化碳排放,减少煤炭、天然气等不可再生资源利用才是硬道理。

为此,应充分开发利用新能源,如太阳能、风能、生物质能、氢能、潮汐能、水能(小水电)等,多管齐下,将温室气体封杀在源头。先来看生物质能利用的例子。2008年1月,全球最大的蒙牛生物质能沼气发电厂在呼和浩特市正式向国家电网并网供电。

这个总投资4500万元的生物质能电厂,利用的是养殖场牛粪经厌氧发酵产生的甲烷气。甲烷与天然气成分基本一致,过去作为温室气体在养殖过程中释放到大气中去了。

养殖场粪便污染也是养殖业的“老大难”问题,生物质电厂的运转将上述问题一揽子解决了,并带来可观的经济效益和环境效益。蒙牛年发电量1000万度,直接进入国家电网,年可减排二氧化碳约2.5万吨。

作为电力产品的副产品,该电厂还年产余热650万兆焦、有机肥1.3万吨、沼气液17万吨。如果充分利用有机肥和沼渣、沼液还田并替代化肥,还可减少相当数量的温室气体排放,减少化肥工业污染,保护生态环境。

参考资料来源:百度百科-温室气体排放

对湿地进行检测用哪种昆虫

蜻蜓。

蜻蜓是典型的水生昆虫,对水质的变化非常敏感,因此常被作为监测水质变化的指示物种,作为湿地水质检测,对人类的帮助很多。

蜻蜓一般捕食蚊子、摇蚊和其他小昆虫, 例如苍蝇、蜜蜂、蝴蝶、蛾、蝉等,部分甚至捕食鱼类。常雌雄成群,在水边飞行,交尾后雌虫产卵于各种环境中,如水中、水草上、树枝上。

扩展资料:

注意事项:

湿地内丰富的植物群落,能够吸收大量的二氧化碳气体,并放出氧气,湿地中的一些植物还具有吸收空气中有害气体的功能,能有效调节大气组分。但同时也必须注意到,湿地生境也会排放出甲烷、氨气等温室气体。

沼泽有很大的生物生产效能,植物在有机质形成过程中,不断吸收CO2和其他气体,特别是一些有害的气体。沼泽地上的氧气则很少消耗于死亡植物残体的分解。沼泽还能吸收空气中粉尘及携带的各种菌,从而起到净化空气的作用。

参考资料来源:百度百科-蜻蜓

参考资料来源:人民网-江西建设湿地生态监测网络体系

星载遥感探测器对大气成分进行光谱分析的方法,原理

遥感技术具有监测范围广、速度快、成本低,且便于进行长期的动态监测等优势, 还能发现有时用常规方法难以揭示的污染源及其扩散的状态, 它不但可以快速、实时、动态、省时省力地监测大范围的大气环境变化和大气环境污染, 也可以实时、快速跟踪和监测突发性大气环境污染事件的发生、发展, 以便及时制定处理措施, 减少大气污染造成的损失。因此,遥感监测作为大气环境管理和大气污染控制的重要手段之一, 正发挥着不可替代的作用。BR1 大气环境遥感监测技术的基本原理遥感监测就是用仪器对一段距离以外的目标物或现象进行观测,是一种不直接接触目标物或现象而能收集信息,对其进行识别、分析、判断的更高自动化程度的监测手段。它最重要的作用是不需要采样而直接可以进行区域性的跟踪测量,快速进行污染源的定点定位,污染范围的核定,污染物在大气中的分布、扩散等,从而获得全面的综合信息。根据所利用的波段, 遥感监测技术主要分为紫外、可见光、反射红外遥感技术;热红外遥感技术和微波遥感技术三种类型。BR大气环境遥感监测作为遥感技术应用中较为重要的内容之一,在业务上不同于常规气象要素的监测。常规气象要素遥感监测[1 ] 主要是指测量大气的垂直温度剖面、大气的垂直湿度剖面、降水量及频度、云覆盖率(云量和云层厚度) 和长波辐射、风(风速和风向) 、地球辐射收支的测量等。而大气环境遥感则是监测大气中的臭氧(O3 ) 、CO2 、SO2 、甲烷(CH4 ) 等痕量气体成分以及气溶胶、有害气体等的三维分布。这些物理量通常不可能用遥感手段直接识别,但由于水汽、二氧化碳、臭氧、甲烷等微量气体成分具有各自分子所固有的辐射BR和吸收光谱特征,如影响水汽分布的主要光谱波长在017μm , O3在0155~0165μm 之间存在一个明显的吸收带等,因此我们实际上可通过测量大气散射、吸收及辐射的光谱特征值而从中识别出这些组分来。研究表明,在卫星遥感中,有两个非常好的大气窗可以用来探测这些组分,即位于可见光范围内的0140~0175μm 的波段范围和在近红外和中红外的0185μm、1106μm、1122μm、1160μm、2120μm 波段处。BR2 大气环境遥感监测技术的应用BR大气环境遥感监测技术按其工作方式可分为被动式遥感监测和主动式遥感监测,被动式遥感监测主要依靠接收大气自身所发射的红外光波或微波等辐射而实现对大气成分的探测;主动式遥感监测是指由遥感探测仪器发出波束、次波束与大气物质相互作用而产生回波,通过检测这种回波而实现对大气成分的探测。由于主动式大气探测仪器既要发射波束,又要接收回波,通常将这种方式称为雷达工作方式。根据遥感平台的不同,大气环境遥感监测又可分为天基、空基遥感和地基遥感。天基、空基遥感是以卫星、宇宙飞机、飞机和高空气球等为遥感平台,地基遥感则是以地面为主要遥感平台。本文将根据大气环境遥感监测技术的工作方式和遥感平台的不同,从四个方面来介绍大气环境遥感监测技术在实际中的应用。BR2. 1 大气环境的被动式空基遥感监测BR目前利用被动式空基遥感对大气环境监测主要包括:对臭氧层的监测,对大气气溶胶和温室气体如CO2 、甲烷(CH4 ) 的监测,对大气主要污染物、大气热污染源以及突发性大气污染事故如沙尘暴等的监测。大气环境污染主要体现在大气污染物上,大气污染物的种类约有数千种,已发现有危害作用而被人们注意到的有一百多种,其中大部分为有机物。本文为了论述的方便,将大气污染的主要污染物按污染区域及污染性质分为三大类,第一类为区域性污染的大气污染物,主要有二氧化硫、氮氧化物、大气颗粒物(包括可吸入颗粒物) 、有机污染物等;第二类为灾害性大气污染,如沙尘暴、有毒气体的泄漏等;第三类为在全球变化中起着不可忽视作用的污染物,如对流层气溶胶、臭氧(O3 ) 、CO2 、甲烷(CH4 ) 等。本文将针对以上三大类污染物来介绍被动式空基遥感在大气环境监测中的应用。BR21111 区域性大气污染物的被动式空基遥感监测BR利用遥感对大气环境进行监测的其中一个方面是对区域性大气污染物的监测,然而区域性大气污染信息是叠加于多变的地面信息之上的微弱信息,这些物理量通常不可能用遥感手段直接识别,提取非常困难,一般的地物提取方法均不实用。目前常用的方法主要有两类,一类是根据污染地区地物反射率发生变化,边界模糊的情况来对大气污染情况进行估计[2 ,3 ] ; 另一类是间接方法,主要根据树叶中SO2 等污染物含量与遥感数据中植被指数的关系估计大气污染的情况[4 ] 。王雪梅、邓孺孺等[5 ] 分析了卫星遥感像元信息构成的物理机制, 将像元信息概化为土壤、植被、水体等基本信息类型的线性集合与污染气体( SO2 ,NOx) 信息的简单叠加,首次从TM 卫星数据直接定量提取珠江口地区大气污染气体累加浓度信息。实验结果表明,所提取的污染信息满足精度要求。有学者[6 ,7 ] 用红外航片资料研究了环境污染区与植被的响应关系,指出受污染杨树与正常健康的杨树相比,光谱发射率在近红外波段(017~111) 有较大幅度的下降,而在红波段(016~017) 则有所增加,叶绿素指数也迅速减少,因此叶绿素指数可成为反映大气污染的一个重要指标。BRL. BRUZZONE[8 ] 等利用搭载在ERS - 2 卫星上的GOME 和ATSR - 2 传感器所接收到的数据,通过两种方法对生物燃烧排放到对流层中的NO2进行了计算,一种是假设这两种传感器所获得的数据与NO2浓度之间存在线性关系;另外一种是用基于辐射传输方程神经网络的非线性无参数方法来反演NO2 浓度。实验结果表明,这两种方法在实际反演NO2 浓度时效果较好。S. CORRADINI 等人[9 ] 根据aster 数据, 利用劈窗算法( the split2window technique) 计算了意大利Mt Etna 火山排放的SO2 ,试验证明,运用该方法可较为准确地计算出SO2的分布。BR21112 灾害性大气污染———沙尘暴的被动式空基遥感监测BR利用遥感技术对大气环境进行监测的另一个方面是对大气污染事故的监测,如对沙尘暴的监测。沙尘暴是严重的生态环境问题,同时也是严重的大气污染问题,它突发性强,危害巨大,当沙尘暴发生时,大量沙尘粒子悬浮于空中并随风移动,对人畜及环境造成极大危害。沙尘暴属于大气气溶胶的一种极端情况。在气象学中,沙尘暴BR是指强风从地面卷起大量沙尘,使空气很浑浊,水平能见度小于110km 的灾害性天气现象。周明煜等[10 ] 利用NOAAPAVHRR 资料分析了1993 年4月北京、天津上空沙尘暴特性,得到在沙尘暴发生时,AVHRR 可见光通道1 和可见光通道2 的反射率都有增加,沙尘暴强度越大,反射率增加越大,但仅给出了反射率增加的大小,而没有根据卫星反射率的变化对沙尘暴进行定量研究。目前对沙尘暴的遥感监测主要是利用GMS 和NOAAPAVHRR 数据,其研究表明, GMS 的红外通道数据有利于确定沙尘暴的位置,同时它所具有的高时间分辨率(1h) ,更有利于大尺度监测沙尘暴的运动轨迹[11~14 ] 。由于NOAAPAVHRR 数据不但可以监测到沙尘暴反射辐射特性[15 ,16 ] ,而且可以在较大尺度上监测到沙尘暴的时空分布[11 ,12 ] ,因此是目前沙尘暴研究和监测的主要遥感信息源。BR21113 影响全球大气环境污染物的被动式空基遥感监测在大气环境研究方面,世界各国科学家、政府及相关机构,不仅关注于局地性的大气环境,而且更注重于全球大气环境的质量,如温室气体效应、全球臭氧空洞以及气溶胶的直接、间接气候强迫效应等导致的全球变化。自1978 年以来,科学家们利用搭载在Nimbus - 7 卫星上的臭氧制图光谱仪(TOMS) 对大气中臭氧进行了卫星观测,开创了利用遥感手段对全球变化进行研究的先河。BRVarotsos 等[17 ] 利用1979~1992 年13 年的Nimbus- 7TOMS 遥感数据分析了希腊上空的臭氧衰减,研究结果表明, 其上空的臭氧衰减率为每年018 %;日本[18 ] 于1996 年发射的ADEDS - Ⅱ卫星上搭载有温室气体干涉监测仪,可提供全球大气中的CO2 、CH4 和CFCS 等温室气体的遥感监测数据。此外,利用ERS - 2 上搭载的全球臭氧监测实验装置(GOMZ) 和大气制图学P化学扫描成像吸收光谱仪(SCIAMACHY) 可对CO 和O3体积浓度进BR行全球制图[19 ] 。BR气溶胶不仅影响全球变化,而且也是影响区域大气环境质量的主要因素,因此,本文将重点介绍被动式空基遥感在气溶胶监测中的应用以及探测气溶胶的卫星传感器的发展历程和特点。BR在对气溶胶的遥感监测方面,高分辨率的卫星遥感不但提供了监测大气气溶胶的可能性,而且还弥补了一般地面观测难以反映气溶胶空间具体分布和变化趋向不同的缺陷,为全球和区域气候的研究以及城市污染的分析提供了丰富的研究资料。气溶胶是指悬浮在大气中的各种液态或固态微粒,通常所指的烟、雾、尘等都属于气溶胶,它对大气中发生的许多物理化学过程有着重要的影响。气溶胶有众多的自然源和人为源,但基本上可分为陆源气溶胶和海源气溶胶两种。国际上卫星遥感气溶胶的研究开始于二十世纪70 年代中期,我国科学家从80 年代中期开始也进行了这方面的研究。1986 年赵柏林等[20 ] 利用NOAAPAVHRR 资料,对海上大气气溶胶进行了研究,由于是研究的尝试阶段,仅对渤海上空一个点进行了测量,结果表明,对气溶胶浓度计算所达到的精度可以满足气候和环境研究的需要。刘莉[21 ] 利用GMS - 5 可见光通道研究了湖面上空气溶胶光学厚度,试验证明了该方法的可行性。毛节泰、李成才等利用MODIS 资料和地面多波段光度计资料对整个中国、中国东部地区及四川盆地等地的气溶胶特性做了大量的研究工作,并取得了一定的成果。国际上在利用卫星资料研究气溶胶方面BR作了很多的工作,尤其是在利用气溶胶光学特性并根据其路径散射光谱进行反演方面。目前,国外对气溶胶进行反演的方法主要有8 种,即单通道反射率反演法、多通道反射率反演法、基于稠密或暗色植被区的黑体反演法、陆地上空对比度削减法、热对比法、陆地—海洋对比法、反射率角度分布法及极化方法。Griggs[22 ,23 ] 发现在海洋表面上空垂直反射出去的太阳辐射值随气溶胶光学厚度的变化而近于线性增加,基于此线性关系建立了海上气溶胶光学厚度单通道反演方法,但这种方法仅限于用在如海洋等低反射率表面的情况,因为当地表反射率较大时,这种线性关系不能很好成立。Mekler 等[24 ] 在辐射传输方程的基础上,利用地球资源观测卫星( ERTS) 反演了气溶胶含量,效果较好。Yoramj 等[25 ] 提出一种能在地表反射率有变化的区域(如水陆交界处) 运用的反演算法,这种算法对辐射传输方程进行了近似,适用于平面平行大气,可用波长范围限于014~018μm;BRKaufman[26~28 ] 等通过大量飞机试验发现,对于植被密集的具有较低反照率的地表, 2113μm 近红外通道反照率和0147μm、0166μm 可见光通道反射率相关较好,此方法已成功地运用于MODIS 的气溶胶反演。BR随着卫星技术的发展,监测气溶胶属性用的卫星传感器也在不断的发展。过去(1981~1998年) 对气溶胶光学厚度的反演使用最多的卫星传感器是搭载在NOAA 卫星上的AVHRR ,主要工作是利用它的第一通道(0163μm) 进行海洋上空气溶胶光学厚度的监测。该传感器本身具有很多缺点,如可见光波段没有进行星上校正等[29 ] 。为了避免太阳光的直射,自1981 年以来,反演海上气溶胶光学厚度仅使用午后极轨卫星(NOAA - 7 ,NOAA - 9 ,NOAA - 11 ,NOAA - 14) ,且人们对海洋上空气溶胶性质的了解主要来自于对其单通道的反演(Rao etal . 1989 ; Stowe et al . 1997) 。之后人们对气溶胶性质的研究逐渐转为使用搭载在Nimbus - 7 上的TOMS 传感器,该传感器对气溶胶吸收特性比较敏感,但是在气溶胶定量分析和确定气溶胶层的高度方面具有很大的不确定性(Torres et al . 1998) 。1995 年,欧洲空间局( ESA)发射了一种新型的多角度传感器ATSR ,搭载于ERS - 2 卫星上,利用这种传感器可以对全球的气溶胶光学特性进行研究,它的波段范围与AVHRR相似,但是它有两个不同的扫描角,因而对气溶胶反演精度有了很大的提高。1996 年日本发射了自己的第一颗地球观测卫星(Advanced EarthBRObservation Satellite - ADEOS) ,该卫星上搭载的传感器有由CNES 和法国空间局提供的辐射偏振探测器( POLDER) ,这是一种敏感的OCTS 传感器。BRPOLDER 辐射偏振探测器是第一个针对海陆气溶胶进行反演而设计的传感器,OCTS 传感器主要是对海温和水色遥感而设计的,它可以倾斜,在热带地区可以避免太阳光的照射,OCTS 传感器现在已经成功地应用于对海面气溶胶的反演, 但POLDER和OCTS 传感器都没有进行星上校正。1997 年NASA 和OrbImage 发射了SeaWiFs 传感BR器,该传感器是商业用的,通过它可获得全球的水色数据,然后提供给全世界的渔民,同时也可被用来对海洋上空气溶胶光学厚度进行反演,该传感器没有热红外波段,也没有星上校正,其主要缺点是波段较窄,很难穿透云层。1999 年,NASA 成功发射了地神Terra 卫星后,对对流层气溶胶遥感能力有了较大的提高,他们还特别针对气溶胶设计了两个传感器:MODIS 和MISR。MODIS 是一个具有中等空间分辨率(250~1000m) ,由36 个通道成像分光计构成的传感器,而且进行了精确的辐射校正。MODIS 突出的特点之一就是可利用17 个波段来区分出云、阴影、浓气溶胶和火灾(Ackerman et al . 1998 ; King etal . 1998) ;MISR 是四通道CCD 阵列,提供了九个单独观测角度的传感器,利用该传感器获得的数据能够反演海洋和陆地上空气溶胶光学厚度和气溶胶类型。2000 年发射的Envisat - 1 是欧洲空间局( ESA) 的一颗高级环境卫星, 上面携带的传感器是AATSR 和MERIS。AATSR 类同于ATSR - 2 ,MERIS 传感器采用的是推扫式仪器,能够在15 个波段上收集数据。NASDA 于2000 年发射了ADEOS - Ⅱ卫星,上面携带的传感器是POLDER 和GLI ,GLI 传感器类同于MODIS ,利用GLI 的数据能够对海洋和陆BR地上空气溶胶进行反演。2002 年,NASA’S EOSCHEM卫星携带OMI 升空,该传感器也被认为能用来反演陆地及海洋上空的气溶胶,该传感器类同于TOM传感器,只是空间分辨率有了较大的提高。BR212 大气环境的主动式空基遥感监测BR目前,大气环境的主动式空基遥感监测主要是星载或机载的微波雷达。此外,还有微波高度计和微波散射计。主动式雷达是由发射机通过天线在很短的时间内向目标物发射一束很窄的大功率电磁波脉冲,然后用同一天线接受目标地物反射的回波信号而进行显示的一种传感器。不同物体,回波信号的振幅、位相不同,故接受处理后,可测出目标地物的方向、距离等数据。目前,许多国家都制定了空间雷达探测计划, 美国NASA 于1993 年首先利用机载的探测雷达监测了大气中气溶胶的分布,1998 年NASN 再次利用载有雷达的极轨卫星测量了大气中的气溶胶、水汽、臭氧等成分;1994 年,Bourdon. A[30 ] 在希腊雅典利用机载差分吸收雷达测量了该市上空的光化学雾,获得了一些大气污染物空间分布数据,如SO2 、NO2 、臭氧和气溶胶等的分布。胡顺星等[31 ] 利用激光雷BR达对对流层2~4km 高度范围的臭氧分布进行了测量, 结果表明, 用YAG 激光产生的两个波段(266nm 和289nm) ,可以得到比较精确的臭氧分布。刘金涛等[32 ] 采用高光谱分辨率激光雷达(HSRL) 系统,同时测量了大气风和气溶胶的光学特性,取得了较好的效果。BR213 大气环境的被动式地基遥感监测BR以上介绍的大气环境遥感监测主要是以卫星或航天飞机为遥感平台的主动、被动式遥感监测,地面上的遥感监测也是大气环境遥感的重要组成部分。目前大气环境的被动式地基遥感监测主要有:太阳直接辐射的宽带分光辐射遥感、微波辐射计遥感、多波段光度计遥感、根据天空散射亮度分布遥感、全波段太阳直接辐射遥感和华盖计遥感等。太阳直接辐射遥感是利用日光在大气中的衰减和散射来测量大气组分的,它通过对可见光的BR测量来反演气溶胶,利用紫外线波段来测量大气臭氧、二氧化碳等[33 ] ;由于大气分子的吸收辐射在很宽的频率范围内产生特定的谱线,且不同分子及不同的能级跃迁产生的谱线不同,微波辐射计就是通过接受这些不同的辐射频率信号来反演大气组分的。利用微波辐射计可测量大气臭氧和氯化物,它测量的大气臭氧精度和地基陶普生光谱仪测量精度相当;此外微波辐射计还可测量大气衰减,它可以得到精确的大气消光系数,这在大地测量、制导和电波通信中是相当重要的[34 ] 。多波段光度计遥感是一种以太阳为光源的被动式地基遥感手段,自大气上界入射到地气系统的太阳辐射受到大气中气体分子以及大气气溶胶粒子的散射和吸收,在地面接收到的太阳辐射包含了大气中气溶胶信息,通过测量接收到的辐射就可以反演出气溶胶的信息。利用多波段光度计遥感气BR溶胶光学厚度是目前气溶胶遥感手段中最准确的方法,通常被用来校验卫星遥感的结果,如NOAA为验证利用第一代AVHRR 卫星测量海洋上空气溶胶方法的准确性,曾经在10 个沿岸和岛屿观测点及观测船上利用多波段光度计对气溶胶进行了测量,并通过比较两种遥感结果的一致性来验证卫星遥感的准确性[35 ] 。毛节泰等[36 ] 在利用多波段光度计测量气溶胶方面作了一些研究工作,如利用MODIS 卫星资料测量了北京地区的气溶胶光学厚度,同时与利用地面光度计测量的结果进行了比较,试验证明,两种方法的测量结果比较接近,这说明了利用卫星遥感监测气溶胶是一种地基遥感监测较好的替代方法,它可以弥补地基遥感地面观测空间覆盖不足的缺陷。刘桂青[37 ] 等2002 年在浙江临安进行了地面光度计以及粒子谱的观测,将观测结果与MODIS 的气溶胶产品和空气污染指数(API) 进行了对比,发现两者间具有很好的相关性。BR214 大气环境的主动式地基遥感监测BR目前,大气环境主动式遥感监测主要是地基遥感监测,典型的主动式大气遥感探测仪器有二十世纪40 年代发明的微波气象雷达和60 年代发明的大气探测激光雷达。用于大气探测的激光雷达是历史上出现最早的激光雷达,也是目前应用最为广泛的一种激光雷达(Hinkley et al . , 1976 ;Measures et al . , 1988) 。激光波束的波长,可与大BR气中的任何原子、分子发生共振而产生回波,不存在大气探测的盲区,它主要用于测量大气的状态、大气污染成分和平流层物质等大气中物质的物理性质及其空间分布特征等。根据它测量的物质种类和目标的不同,可分为米氏激光雷达、瑞利激光雷达、荧光雷达、喇曼激光雷达、差分光激光雷达、多普勒雷达等(表1) 。邱金桓等[38 ] 于1982 年5月首次用激光雷达监测了沙尘暴的消光特性,由于当时所用的激光雷达功率较小,只探测到垂直BR高度大约2km 范围,结果表明,沙尘暴发生时气溶胶光学厚度可以有一个量级的变化;他们[39 ] 又对1988 年4 月发生的沙尘暴进行的激光雷达探测,垂直高度达到了6km 以上,揭示出沙尘暴垂直结构依赖于风场结构。1986 年,杨舒等[40 ] 从理论上研究了利用多波段激光雷达反演气溶胶粒子谱和复折射率的方法。中国科学院安徽光机所自1995 年起就利用自己研制的523 和1064 nm 双波长激光雷达,对大气气溶胶的水平和垂直消光特性进行了探测,积累了大量的数据,并得到了不同大气条件下典型的气溶胶垂直分布廓线和气溶胶指数的特征。石广玉等[41 ] 与日本合作在西藏拉萨等地也开展了短期激光雷达测量气溶胶的工作。BRIMG onmousewheel="return bbimg(this)" style="WIDTH: 584px; HEIGHT: 150px" height=224 src="/hjjc/UploadFiles_2592/200611/20061119180335623.jpg" width=861 onload=javascript:resizepic(this) border=0BR3 存在的问题及其展望BR目前,遥感技术正从单一遥感资料的分析,向多时相、多数据源(包括非遥感数据资料数据) 的信息复合与综合分析过渡。从对各种事物的表面性的描述,向内在规律分析、定量化分析过渡,就大气环境遥感而言,有待于在以下几方面加强研究:BR(1) 大气环境遥感的定量化、集成化、系统化和全球化。“定量化”是大气环境遥感研究的永恒主题,也是大气环境遥感中的关键技术之一,解决这一问题的基本前提是建立起大气环境遥感监测的指标体系,许多后续的定量研究工作将依附于所建立的指标体系。大气环境遥感的定量化对大气环境遥感技术集成、应用及系统化有重要意义。这里的集成有两方面的意思,一是时间和空间上不同数据源的互补和综合;二是互为约束或附加BR条件的遥感反演技术。地球观测系统( EOS) 是划时代的长期发展的伟大工程,也是一项系统工程,该工程对环境与气候变迁、全球变化、可持续发展研究等有极其重要的意义。大气遥感在EOS 中占有重要地位,而现有的大气遥感尤其是大气环境遥感的“定量化”和系统化水平远不能满足环境与气候变迁要求。BR(2) 大气环境的主动和被动式卫星遥感的一体化。从现有国外研究资料来看,卫星遥感技术在大气环境保护、监测及预测领域中的应用是不可替代的,探测大气环境的遥感器也将随着卫星探测技术的发展而不断改进。二十世纪是被动式卫星遥感时代,主要以卫星为遥感平台,而二十一世纪将是主动、被动式大气环境遥感各领风骚的BR时代,主动式遥感有激光雷达、微波雷达、GPS 等,这些探测技术具有高技术、多功能、高探测分辨率和高探测精度等优点,可以将它们同卫星集成在一起,也可将它们作为卫星遥感数据的补充数据源或地面校验数据。BR(3) 高光谱、高时间、高空间及多角度、多时相、多偏振等多种数据源的综合应用。从国内外学者对大气环境遥感监测的研究情况来看,其对研究大气环境遥感所用的数据源的要求很高,不仅仅只局限于使用陆地卫星数据等单一数据源,还需要高光谱分辨率、高空间分辨率或高时间分辨率的卫星遥感数据源。BR(4) 高性能传感器的研制。重点发展能够选择监测某种或某类优先污染物(如氯苯和硝基苯等) 浓度的遥感器。BR(5) 建立自己的大气环境遥感监测业务化运行系统,以便更好地为环境管理决策服务。BR当前,大气环境遥感监测技术应依托我国的对地观测技术和对地观测系统的发展计划,同时充分利用国际上资源环境卫星系统,开展广泛的国际合作和交流,大力发展我国的大气环境遥感监测技术,并充分利用现有的环境监测网点和常规监测方法,采用遥感技术与地面监测相结合的方法,建立我国的大气环境遥感监测系统。

今天的温室气体多组分检测报价有关的说明就先聊到这里啦,想指导更多有关于温室气体核查的东西,可以移步到官网去查看哦,会有更多的惊喜等着你哦。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624
YP官网